Wh-indefinites in Mandarin: The case of shenme

Siyuan Cao
s.y.cao@outlook.com

September 19, 2023

Wh-indefinites in Mandarin

(1)

Zhangsan yudao shei / shenme ren liao le yihui Zhangsan meet who what person chat ASP a.while 'Who did Zhangsan meet and chat with for a while?'
'Zhangsan met someone and chatted with her for a while.
(I don't know who he met).'
(2)

Zhangsan cang zai nali / shenme difang Zhangsan hides in where / what place
'Where does Zhangsan hide?'
'Zhangsan hides somewhere. (I don't know where he hides).'

- Wh-words in Mandarin can have a non-interrogative indefinite reading in addition to its interrogative use (and henceforth $w h$-indefinites).

Shenme?

(3) Zhangsan yudao *san ge shei / san ge shenme ren Zhangsan meet three CL who three CL what person liao le yihui
chat ASP a.while
'What three people did Zhangsan meet and chat with for a while?'
'Zhangsan met three people and chatted with them for a while. (I don't know who he met).'
(4) Zhangsan cang zai *yi ge nali

Zhangsan hides in one CL where /
yi ge shenme difang
one CL what place
'Where does Zhangsan hide?'
'Zhangsan hides somewhere. (I don't know where he hides).'

What are classifiers in Mandarin?

(5) a. shu
book
'a book / the book / books / the books'
Bare nouns
b. yi/san ben shu
one/three CL book
'one book / three books'
Non-bare nouns

- No morphology for singularity/plurality, (in)definiteness
- Mostly, classifiers are required to count/measure nouns \mapsto bare nouns vs. non-bare nouns

Shenme: bare vs. non-bare forms

(6) a. Zhangsan mai-le shenme shu Zhangsan buy-PRF what book 'Zhangsan bought book(s). (I don't know what).' 'What book(s) did Zhangsan buy?'

Bare shenme
b. Zhangsan mai-le yi/san ben shenme shu Zhangsan buy-PRF one/three CL what book 'Zhangsan bought one book / three books. (I don't know what).'
'What one book / three books did Zhangsan buy?'
Non-bare shenme

- Similarly, shenme can appear with and without classifiers \mapsto bare shenme vs. non-bare shenme
- Treat shenme as an epistemic indefinite (henceforth EI)
- Show the distribution of bare and non-bare shenme with respect to the uses identified for Els

Epistemic indefinites

- Having a conventionalized ignorance inference [AP10, AP15]
- German irgendein, Spanish algún, Italian un qualche
- Mandarin shenme
(7) a. Irgendein Student hat angerufen. \#Rat mal some student has called guess PART wer?
who
'Some student called. (I don't know who).'
b. Xiaohong gen (yi ge) shenme ren jiehun-le. Xiaohong with (one CL) what person marry-PRF \#Ni cai shi shui? / \#Jiushi Xiaoming. you guess be who / namely Xiaoming 'Xiaohong married somebody. (I don't know who).'
c. Somebody called. Guess who?

Possible functions of Els

- Ignorance (more than one alternatives possible) $\mapsto \mathrm{SU}$, epiU
- Unembedded \mapsto SU
- Embedded under epistemic modals \mapsto epiU
- Plain negated existentials \mapsto NPI
- Free choice (all the alternatives possible) \mapsto deoFC
- Co-variation (narrow scope reading) under universal quantifiers \mapsto co-var

	SU	epiU	NPI	deoFC	co-var
Bare shenme	\checkmark	\checkmark	\checkmark	\# 1	\checkmark
Non-bare shenme	\checkmark	\checkmark	\#	\checkmark	\checkmark
German irgendein	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Spanish algún	\checkmark	\checkmark	\checkmark	\#	\checkmark
Italian un qualche	\checkmark	\checkmark	\#	\#	\checkmark

[^0]
Partial vs. total variation

(8) a. Partial variation: $\exists x \exists y(\diamond \phi(x) \wedge \diamond \phi(y) \wedge x \neq y)$
b. Total variation: $\forall x \diamond \phi(x)$

epiU

Context: John and Mary knew that Peter went on a trip last week, but they did not know where he went. They were talking about where Peter could have gone. John suggested:
(9) Ta keneng qu-le (yi ge) Ouzhoude shenme he possibly go-prf (one CL) European what chengshi. city
'He could have gone to an European city.'
Context: Mary knew that Peter stayed with a friend during his trip, and Peter only had two overseas friends, one in London and one in Berlin. So, she added:
(10) *Bu dui. Ta zhi keneng qu-le Lundun huo Bolin. not right he only possibly go-PrF London or Berlin 'No, he could only have gone to London or Berlin.'
(11) a. Zhangsan mei mai shenme shu. Zhangsan neg buy what book 'Zhangsan didn't buy any book.'
b. ?Zhangsan mei mai san ben shenme shu. Zhangsan NEG buy three CL what book \# 'Zhangsan didn't buy any three books.' NPI \# 'Zhangsan didn't buy three specific books (and I don't know which three).

deoFC

Context: John and Mary were planning a trip to Europe. John suggested:
(12) Women keyi qu *(yi ge) Ouzhoude shenme chengshi. we can go one cl European what city 'We can go to an European city (whichever will work).'

Context: Mary knew that they could only visit an European city where they had a friend to stay with. Since they only had a friend in London and a friend in Berlin, she added:
(13) Bu dui. Women zhi keyi qu Lundun huo Bolin. no right we only can visit London or Berlin 'No, we can only go to London or Berlin.'
(14) Mei ge ren dou mai-le (yi ben) shenme shu. every CL person Part buy-PRF one CL what book 'Everyone bought one book / book(s).'
\rightsquigarrow Wide scope reading: There is/are (a) specific book(s) bought by all the people, and I don't know which book(s). SU \checkmark
\leadsto Narrow scope reading: Different people bought different books. There are at least two different books / two combinations of books being bought.

Interim summary

	SU	epiU	NPI	deoFC	co-var	Q
Bare shenme	\checkmark	\checkmark	\checkmark	$\#^{2}$	\checkmark	\checkmark
Non-bare shenme	\checkmark	\checkmark	$\#$	\checkmark	\checkmark	\checkmark

- Form distinction between bare and non-bare shenme
- NPI only available for bare shenme
- deoFC only available for non-bare shenme [Law19]
- Shenme as both an El and a question word

[^1]
Proposal

- Team Semantics [AD22, AD23]
- Formulas are interpreted with respect to teams (as sets of assignments)
- Two-sorted: individuals in D and possible worlds in W
- Extending Team Semantics [AD22, AD23] with:
- Plurality:
- Allowing both singular and plural individuals in the domain
- Numeral classifiers individuate and count Mandarin nouns in terms of atoms (one, two, ... CL: $\# x=1,2, \ldots$) [Law19]
- Questions:
- The distinction between declarative and interrogative is captured at the level of contexts (pairs of an initial team and an issue)

Plurality

Definition (Pluralized Domain)

Given a domain of individuals D, the pluralized domain generated by D is the join semi-lattice $(\uparrow D, \oplus)$ isomorphic to
$(\mathcal{P}(D) \backslash\{\varnothing\}, \cup)$ with $D \subseteq \uparrow D$ as set of atoms.

- In terms of the idempotent, commutative and associative binary operation of summation \oplus, we can further define a binary relation \leq for elements in $\uparrow D$ as follows: for all $x, y \in \uparrow D, x \leq y$ if and only if $x \oplus y=y$. Then the sum of x and $y, x \oplus y$, is the smallest entity in $\uparrow D$ which has x and y as its parts.
- For each plural individual $d \in \uparrow D$, we denote by $\operatorname{ATOM}(d)$ the set of atoms a in D such that $a \leq d$ (or equivalently $d=a \oplus d)$:

$$
\operatorname{ATOM}(d)=\{a \in D: a \leq d\}
$$

Logic

Definition (Language)

Given a first-order signature σ (composed of predicates $P^{n} \in \mathscr{P}^{n}$ with $n \in \mathbb{N}$), and individual variables $z_{d} \in \mathscr{Z}_{d}$ and world variables $z_{w} \in \mathscr{Z}_{w}$, the terms and formulas of our language are:

$$
\begin{gathered}
t::=z_{d}\left|z_{w}\right| \# z_{d} \\
\phi::=P(\vec{z})|\phi \wedge \psi| \phi \vee \psi\left|\exists_{s} z \phi\right| \exists, z \phi|\forall z \phi| \operatorname{dep}(\vec{z}, y) \mid \operatorname{var}(\vec{z}, y)
\end{gathered}
$$

Definition (Interpretation of Terms)

$$
\begin{array}{ll}
\text { if } t=z: & i(t)=i(z) \\
\text { if } t=\# z_{d}: & i(t)=\left|\operatorname{ATOM}\left(i\left(z_{d}\right)\right)\right|
\end{array}
$$

El in proposal by [AD22, AD23]: variation

- El: $\lambda P \cdot \exists_{s} x[P(x, v) \wedge \operatorname{var}(\varnothing, x)]$
- Core hypothesis in [AD22, AD23]: Els are strict existentials triggering the variation atom $\operatorname{var}(\varnothing, x)$

$$
\begin{array}{cc}
v & x \\
\hline \ldots & d_{1} \\
\ldots & d_{2}
\end{array}
$$

Figure: Variation

My proposal: variation + maximality

- (Bare) shenme: $\lambda P \cdot \exists_{s} x[P(x, v) \wedge \operatorname{var}(\varnothing, x) \wedge \max (x, v, P)]$
- Non-bare shenme: for example, three Cl shenme, $\lambda P . \exists_{s} x[P(x, v) \wedge \operatorname{var}(\varnothing, x) \wedge \max (x, v, P) \wedge \# x=3]$
- The maximality condition:
- max (x, v, P) : the value of x is maximal with respect to the property P in the possible world v
- This derives ...
- SU, epiU, co-var (from [AD22, AD23])
- NPI for bare rather than non-bare shenme

Definition (Maximality)
$\uparrow M, T \models \max (x, v, P)$ iff for all $i \in T:\langle i(x), i(v)\rangle \in l_{\uparrow}(P)$ and for all $d \in \uparrow D$: if $\langle d, i(v)\rangle \in I_{M}(P)$, then $d \leq i(x)$.

The maximality condition

(15) a. Zhangsan mai-le shenme shu.

Zhangsan buy-PRF what book
'Zhangsan bought book(s).' Bare shenme
b. Zhangsan mai-le yi ben shenme shu.

Zhangsan buy-PRF one CL what book
'Zhangsan bought one book.' Non-bare shenme

- Context: You saw Zhangsan coming out from a bookstore with the book a on his hand, but you didn't know if he bought another book b. In this context, (15-a) is true whereas (15-b) is NOT.

$$
\begin{array}{cc}
v & x \\
\hline w_{a} & a \\
w_{a b} & b
\end{array}
$$

(a) Without maximality: (15-b) is true (\#)

(b) With maximality: $(15-b)$ is false (\checkmark)

Deriving NPI: three forms under negation

(16) Zhangsan mei mai shenme shu. Zhangsan NEG buy what book 'Zhangsan didn't buy any book.'
(17) ?Zhangsan mei mai yi/liang ben shenme shu. Zhangsan NEG buy one/two CL what book \# 'Zhangsan didn't buy any one/two book(s).' \#NPI
'Zhangsan didn't buy one/two specific book(s).' SU
Non-bare shenme \mapsto SU
(18) Zhangsan mei mai *yi/liang ben shu.

Zhangsan neg buy one/two CL book
'Zhangsan didn't buy one/two book(s).'
Only numeral classifiers under negation *one CL vs. two CL

Deriving NPI

Construction	Interpretation	Reason
bare shenme	0	NPI
$\#$ one CL	$\ngtr 1$	in competition with bare shenme
$\#$ one CL shenme	$\neq 1$	non-convex
two CL	$\ngtr 2$	
$\#$ two CL shenme	$\neq 2$	non-convex

Definition (Intensional Negation [AD23, FB20])

$\neg \phi \Leftrightarrow \forall w[\phi(v / w) \rightarrow v \neq w]$

- Bare shenme under negation $\mapsto \mathrm{NPI}$ as in [AD23]
- Non-bare shenme under negation (given the maximality condition) \mapsto only nouns having the exact number of atoms in accordance with that of the numeral classifier are negated

Illustration: bare shenme

$$
\forall w\left(\exists_{s} x[P(x, w) \wedge \operatorname{dep}(v w, x) \wedge \operatorname{var}(\varnothing, x) \wedge \max (x, w, P)] \rightarrow v \neq w\right)
$$

v	w	X
w_{\varnothing}	w_{\varnothing}	a
w_{\varnothing}	w_{a}	a
w_{\varnothing}	$w_{a b}$	$a \oplus b$
w_{\varnothing}	$w_{a b c}$	$a \oplus b \oplus c$

(a) Initial team $T=\left\{w_{\varnothing}\right\}$
(b) Initial team $T=\left\{w_{a}\right\}$

V	W	X
$W_{a b}$	w_{\varnothing}	a
$W_{a b}$	W_{a}	a
$W_{a b}$	$W_{a b}$	$a \oplus b$
$W_{a b}$	$W_{a b c}$	$a \oplus b \oplus c$

(c) Initial team $T=\left\{w_{a b}\right\}$

V	w	X
w_{a}	w_{\varnothing}	a
w_{a}	w_{a}	a
w_{a}	$w_{a b}$	$a \oplus b$
w_{a}	$w_{a b c}$	$a \oplus b \oplus c$

V	W	X
$W_{a b c}$	w_{\varnothing}	a
$W_{a b c}$	W_{a}	a
$W_{a b c}$	$W_{a b}$	$a \oplus b$
$W_{a b c}$	$W_{a b c}$	$a \oplus b \oplus c$

(d) Initial team $T=\left\{w_{a b c}\right\}$

Figure: Bare shenme: felicitous when initial team $T=\left\{w_{\varnothing}\right\}$

Illustration: two CL

$$
\forall w\left(\exists_{s} x[P(x, w) \wedge \operatorname{dep}(v w, x) \wedge \# x=2] \rightarrow v \neq w\right)
$$

v	w	X
w_{\varnothing}	w_{\varnothing}	$a \oplus b$
w_{\varnothing}	w_{a}	$a \oplus b$
w_{\varnothing}	$w_{a b}$	$a \oplus b$
w_{\varnothing}	$w_{a b c}$	$a \oplus b$

(a) Initial team $T=\left\{w_{\varnothing}\right\}$

v	w	x
$W_{a b}$	w_{\varnothing}	$a \oplus b$
$W_{a b}$	w_{a}	$a \oplus b$
$W_{a b}$	$W_{a b}$	$a \oplus b$
$W_{a b}$	$W_{a b c}$	$a \oplus b$

(c) Initial team $T=\left\{w_{a b}\right\}$

v	w	X
w_{a}	w_{\varnothing}	$a \oplus b$

w_{a}	w_{a}	$a \oplus b$
w_{a}	$w_{a b}$	$a \oplus b$
w_{a}	$w_{a b c}$	$a \oplus b$

(b) Initial team $T=\left\{w_{a}\right\}$

v	w	X
$w_{a b c}$	w_{\varnothing}	$a \oplus b$
$w_{a b c}$	w_{a}	$a \oplus b$
$w_{a b c}$	$w_{a b}$	$a \oplus b$
$W_{a b c}$	$W_{a b c}$	$a \oplus b$

(d) Initial team $T=\left\{w_{a b c}\right\}$

Figure: Two cL: felicitous when initial team $T=\left\{w_{\varnothing}\right\},\left\{w_{a}\right\}$

Illustration: two CL shenme

$\forall w\left(\exists_{s} x[P(x, w) \wedge \operatorname{dep}(v w, x) \wedge \operatorname{var}(\varnothing, x) \wedge \max (x, w, P) \wedge \# x=2] \rightarrow\right.$ $v \neq w)$

v	w	x
w_{\varnothing}	w_{\varnothing}	a
w_{\varnothing}	w_{a}	a
w_{\varnothing}	$w_{a b}$	$a \oplus b$
w_{\varnothing}	$w_{a b c}$	$a \oplus b \oplus c$

(a) Initial team $T=\left\{w_{\varnothing}\right\}$

V	W	X
$W_{a b}$	w_{\varnothing}	a
$w_{a b}$	W_{a}	a
$W_{a b}$	$W_{a b}$	$a \oplus b$
$W_{a b}$	$W_{a b c}$	$a \oplus b \oplus c$

(c) Initial team $T=\left\{w_{a b}\right\}$

v	w	x
w_{a}	w_{\varnothing}	a
w_{a}	w_{a}	a
w_{a}	$w_{a b}$	$a \oplus b$
w_{a}	$w_{a b c}$	$a \oplus b \oplus c$

(b) Initial team $T=\left\{w_{a}\right\}$

v	w	X
$w_{a b c}$	w_{\varnothing}	a
$w_{a b c}$	w_{a}	a
$W_{a b c}$	$w_{a b}$	$a \oplus b$
$W_{a b c}$	$w_{a b c}$	$a \oplus b \oplus c$

(d) Initial team $T=\left\{w_{a b c}\right\}$

Figure: Two CL shenme: felicitous when initial team
$T=\left\{w_{\varnothing}\right\},\left\{w_{a}\right\},\left\{w_{a b c}\right\}$

Questions

Definition (Interrogative Extension)

$T\left[\exists_{s} \vec{x} \phi\right]=T^{\prime}\left[\vec{f}_{s} / \vec{x}\right]$, where T^{\prime} is a maximal subset of T such that $T^{\prime}\left[\vec{f}_{s} / \vec{x}\right] \vDash \phi$ if there is such a unique \vec{f}_{s}, otherwise undefined.

Definition (Partition)

The partition $\operatorname{PART}\left(\exists_{s} \vec{x} \phi, T\right)$ generated by an interrogative $\exists_{s} \vec{x} \phi$ over the initial team T is an equivalence relation R over T such that for all $i, j \in T, R(i, j)$ iff

$$
i \preceq T\left[\exists_{s} \vec{x} \phi\right]_{\vec{x}=\vec{d}} \Leftrightarrow j \preceq T\left[\exists_{s} \vec{x} \phi\right]_{\vec{x}=\vec{d}} \text { for all } \vec{d},
$$

where $T_{\vec{x}=\vec{d}}=\{i \in T: i(\vec{x})=\vec{d}\}$.

$$
\begin{gathered}
v \\
\hline w_{\varnothing} \\
w_{a} \\
w_{b} \\
w_{a b}
\end{gathered}
$$

(a) Initial team T

(b) Maximal subteam T^{\prime} such that $T^{\prime}\left[\vec{f}_{s} / \vec{x}\right] \vDash C(x, v) \wedge \max (x, v, C)$ with a unique \vec{f}_{s}

$$
\text { a unque } t_{s}
$$

(c) Partition

Figure: 'Who came?' $\exists_{s} x[C(x, v) \wedge \max (x, v, C)]$

Application: plain polar interrogative

(19) a. Zhangsan mai-le Zhanzhengyuheping ma? Zhangsan buy-PrF war.and.peace

PART 'Did Zhangsan buy War and Peace?'
b. $\quad \exists_{s} P(b, v)$

(a) Initial team T

(b) Maximal subteam $T^{\prime} \vDash P(b, v)$

(c) Partition

Figure: Plain polar interrogative

Application: existential polar interrogative using shenme

(20)
a. Zhangsan mai-le shenme shu ma? Zhangsan buy-Prf what book PART
'Did Zhangsan buy book(s)?'
b. $\quad \exists_{s}\left[\exists_{s} x[P(x, v) \wedge \operatorname{var}(\varnothing, x) \wedge \max (x, v, P)]\right]$

v
w_{\varnothing}
w_{a}
w_{b}
$w_{a b}$

(a) Initial team T

v	X
w_{a}	a
w_{b}	b
$w_{a b}$	$a \oplus b$

(b) Maximal subteam
$T^{\prime} \vDash \exists_{s} x[P(x, v) \wedge$
$\operatorname{var}(\varnothing, x) \wedge$
$\max (x, v, P)]$

v	X
w_{\varnothing}	
w_{a}	a
w_{b}	b
$w_{a b}$	$a \oplus b$

(c) Partition

Figure: Existential polar interrogative

Application: wh-interrogative using shenme

(21) a. Zhangsan mai-le shenme shu? Zhangsan buy-PRF what book 'What book(s) did Zhangsan buy?'
b. $\quad \exists_{s} x[P(x, v) \wedge \operatorname{var}(\varnothing, x) \wedge \max (x, v, P)]$

v
w_{\varnothing}
w_{a}
w_{b}
$w_{a b}$

(a) Initial team T
(b) Maximal subteam
T^{\prime} such that

$$
T^{\prime}\left[\vec{f}_{s} \mid \bar{x}\right] \vDash P(x, v) \wedge
$$

$$
\operatorname{var}(\varnothing, x) \wedge \max (x, v, P)
$$

Figure: Wh-interrogative with bare shenme

Questions: decomposing forms

Form	Type
$P(a, v)$	plain declarative
$\exists_{s} x[P(x, v) \wedge \operatorname{var}(\varnothing, x) \wedge \max (x, v, P)]$	declarative with wh-indefinites wh-interrogative
$\exists_{s} P(a, v)$	plain (polar) interrogative
$\exists_{s}\left[\exists_{s} x[P(x, v) \wedge \operatorname{var}(\varnothing, x) \wedge \max (x, v, P)]\right]$	existential polar interrogative

- $\exists_{s} \vec{x}=\exists_{s} x_{1}, \ldots, x_{n}$, where:
- Plain declaratives: ϕ without $\exists_{s} \vec{x}$
- Plain/polar interrogatives: $\exists_{s} \vec{x} \phi$ with $n=0 \mapsto \exists_{s} \phi$
- $\exists_{s} \vec{x} \phi$ with $n \neq 0$: either declaratives or interrogatives depending on the context, namely, sentences with shenme
- Or, in terms of support in a context $C=(T, I)$:
- Plain declaratives: for all $C, C \not \forall \phi_{i n t}$
- Plain/polar interrogatives: for all $C, C \not \forall \phi_{\text {decl }}$
- Mixed type of sentences: there are C, C^{\prime} such that $C \vDash \phi_{\text {decl }}$ and $C^{\prime} \vDash \phi_{\text {int }}$

Dual use of shenme: declarative \& wh-interrogative
a. Zhangsan mai-le shenme shu Zhangsan buy-PRF what book
'Zhangsan bought book(s) (I don't know which).' 'What book(s) did Zhangsan buy?'
b. $\exists_{s} x[P(x, v) \wedge \operatorname{var}(\varnothing, x) \wedge \max (x, v, P)]$

v	x
w_{a}	a
w_{b}	b
$w_{a b}$	$a \oplus b$

(a) Context supporting declarative

(b) Context supporting wh-interrogative

Figure: Declarative vs. wh-interrogative using bare shenme

Conclusion

- Shenme is a strict existential with additionally the conditions of variation and maximality
- Deriving a uniform account for shenme to be used as an El in declaratives and as a question word in interrogatives
- Future work for cross-linguistic comparison: if the maximality condition can be generalized to wh-indefinites in other languages

References I

圊 Maria Aloni and Marco Degano.
(non-)specificity across languages: constancy, variation, v-variation.
In Proceedings of SALT 32, 2022.
國 Maria Aloni and Marco Degano.
How to be (non-)specific.
Manuscript, 2023.
© Maria Aloni and Angelika Port.
Epistemic indefinites crosslinguistically.
In Proceedings of NELS 41, 2010.
Raria Aloni and Angelika Port.
Epistemic indefinites and methods of identifications.
In Luis Alonso-Ovalle and Paula Menéndez-Benito, editors,
Epistemic Indefinites. Oxford University Press, 2015.

References II

Donka F. Farkas and Adrian Brasoveanu. Kinds of (Non)Specificity, pages 1-26. John Wiley \& Sons, 2020.
國 Jess H. K. Law.
The number sensitivity of modal indefinites.
Proceedings of Sinn und Bedeutung, 21(2):785-800, May 2019.

[^0]: ${ }^{1}$ Judgement by [Law19].

[^1]: ${ }^{2}$ Judgement by [Law19]

